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Example: Location Game

each of n agents wants to open a business

actions: choosing locations

utility: depends on

the location chosen
number of agents choosing the same location
numbers of agents choosing each of the adjacent locations
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Game on a graph

B1 B3

T 4

B4B2

T 3T 2T 1

B5 B7

T 8

B8B6

T 7T 6T 5

This can be modeled as a game played on a directed graph:

each player has a token to put on one of the nodes;
each player’s utility depends on:

the node chosen
configuration of tokens over neighboring nodes

Action Graph Games (Bhat & Leyton-Brown 2004, Jiang &
Leyton-Brown 2006)

fully expressive, compact representation of games
exploits anonymity, context specific independence
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Definitions

Definition (action graph)

An action graph is a tuple (A, E), where A is a set of nodes
corresponding to distinct actions and E is a set of directed edges.

Each agent i’s set of available actions: Ai ⊆ A
Neighborhood of node α: ν(α) ≡ {α′ ∈ A|(α′, α) ∈ E}

Definition (configuration)

A configuration c is an |A|-tuple of integers (c[α])α∈A. c[α] is the
number of agents who chose the action α ∈ A. For a subset of
actions X ⊂ A, let c[X] denote the restriction of c to X. Let
C[X] denote the set of restricted configurations over X.
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Action Graph Games

Definition (Action Graph Game (AGG))

An action graph game Γ is a tuple 〈N, (Ai)i∈N , G, u〉 where

N is the set of agents

Ai is agent i’s set of actions

G = (A, E) is the action graph, where A =
⋃
i∈N Ai is the

set of distinct actions

u = (uα)α∈A, where uα : C[ν(α)] 7→ R

Definition (symmetric AGG)

An AGG is symmetric if all players have identical action sets,
i.e. if Ai = A for all i.
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AGG Properties

AGGs are fully expressive

Symmetric AGGs can represent arbitrary symmetric games

Representation size ‖Γ‖ is polynomial if the in-degree I of G
is bounded by a constant

Any graphical game (Kearns, Littman & Singh 2001) can be
encoded as an AGG of the same space complexity.

AGG can be exponentially smaller than the equivalent
graphical game & normal form representations.
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Pure Nash Equilibria

Action profile: a = (a1, . . . , an)

Definition (pure Nash equilibrium)

An action profile a is a pure Nash equilibrium of the game Γ if for
all i ∈ N , ai is a best response to a−i (i.e. for all a′i ∈ Ai,
ui(ai, a−i) ≥ ui(a′i, a−i)).

not guaranteed to exist

often more interesting than mixed Nash equilibria
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Complexity of Finding Pure Equilibria

Checking every action profile:

linear time in normal form size

worst-case exponential time in AGG size

Consider the restriction to symmetric AGGs.

Theorem (Conitzer, personal communication; also proven
independently in (Daskalakis et al. 2008))

The problem of determining whether a pure Nash equilibrium exists
in a symmetric AGG is NP-complete, even when the in-degree of
the action graph is at most 3.
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Our Contribution

We provide an algorithm that is tractable for symmetric AGGs with
bounded treewidth

the algorithm can also be applied to other settings

Specifically, we propose a dynamic programming approach:

partition action graph into subgraphs (via tree decomposition)

construct equilibria of the game from equilibria of games
played on subgraphs

Related Work:

finding pure equilibria in graphical games

(Gottlob, Greco, & Scarcello 2003) and (Daskalakis &
Papadimitriou 2006)

finding pure equilibria in simple congestion games

(Ieong, McGrew, Nudelman, Shoham, & Sun 2005)
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Restricted Game

To derive an algorithm that builds up from partial solutions, we
must define the concept of a restricted game

game played by a subset of players: n′ ≤ n
actions restricted to R ⊆ A
utility functions same as in original AGG

need to specify configuration of neighboring nodes not in R
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restricted game Γ(n′, R, c[ν(R)])
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Partial Solution

We want to use equilibria of restricted games as building blocks
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Definition (partial solution)

A partial solution on a restricted game Γ(n′, X, c[ν(X)]) is a
configuration c[X ∪ ν(X)] such that c[X] is a pure NE of Γ.
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Extending partial solutions

Problem: combining two partial solutions on two
non-overlapping restricted games does not necessarily produce
an equilibrium of the combined game

configurations may be inconsistent, or
player might profitably deviate from playing in one restricted
game to another

keeping all partial solutions: impractical as sizes of restricted
games grow

we would like sufficient statistics that summarize partial
solutions as compactly as possible
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Sufficient statistic
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Sufficient Statistic: a tuple consisting of

1. configuration over

outside neighbours: ν(X)
inside nodes that are neighbors of outside nodes: ν(X)

2. number of agents playing in X

3. Uw, utility of the worst-off player in X \ ν(X).

4. Ub, best utility an outside player can get by playing in
X \ ν(X).

Number of distinct tuples: polynomial for action graphs of
bounded treewidth
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Combining sufficient statistics

Given two sets of such tuples, summarizing partial solutions on
X,Y ⊂ A, we can compute the set of sufficient statistics for the
combined restricted game X ∪ Y

start with all consistent configurations

analogous to database join of the two sets of tuples

discard those with profitable X→Y deviations (& vice versa)

easy: discard when Uw from X is worse than Ub from Y
trickier: checking deviations from X ∩ ν(Y ) to ν(Y )

utilities in ν(Y ) change when c[ν(Y )] changes, so checking
these deviations is more costly
solution: augment our sufficient statistics to keep track of the
configuration of the neighborhood of ν(Y ), in order to
compute these utilities on the fly
luckily, for graphs of bounded treewidth, this implies storing a
small amount of additional information

overall: all profitable deviations can be discarded efficiently
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Algorithm

1 Construct the primal graph of the action graph.

2 Build a tree decomposition of this primal graph.

3 Partition the AGG according to the tree decomposition.

4 Find all sufficient statistics1 corresponding to partial solutions of
games restricted to each partition.

5 Working up the tree, combine adjacent nodes together.

6 When root is reached, return whether the game has a PSNE.

Theorem
For symmetric AGGs with bounded treewidth, our algorithm determines
existence of pure Nash equilibria in polynomial time.

Recover a PSNE from the SS’s: downwards pass on the tree

1Augment sufficient statistics to include configurations over additional actions that
belong to the decomposition’s tree node that is closest to the root.
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An Example

?>=<89:;A
**

oo // ?>=<89:;B
jjOO

��?>=<89:;E

		

oo // ?>=<89:;D

		

oo // ?>=<89:;C oo // ?>=<89:;F

		

oo // ?>=<89:;G

		

1

Two players
Utility functions:

start with payoff of 0
+1 reward if playing action F or D
−2 penalty if another player selected an action with an
incoming edge

For C, this means a neighboring action (since C does not
have a self-edge)
Otherwise, this means the same or a neighboring action

Pure Nash equilibria:
One player chooses D, the other chooses F
Both players choose C

Pure Nash Equilibria in AGGs Jiang & Leyton-Brown
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1. Construct Primal Graph

Action graph:

?>=<89:;A
**

oo // ?>=<89:;B
jjOO

��?>=<89:;E

		

oo // ?>=<89:;D

		

oo // ?>=<89:;C oo // ?>=<89:;F

		

oo // ?>=<89:;G

		

1

Primal graph: make each neighborhood a clique

?>=<89:;A

@@
@@

@@
?>=<89:;B

@@
@@

@@

~~
~~

~~

?>=<89:;E ?>=<89:;D ?>=<89:;C ?>=<89:;F ?>=<89:;G

1
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2. Construct Tree Decomposition

A tree where each node is labeled with one or more nodes from the
primal graph, where

every label is used at least once

for every edge in the primal graph from α1 to α2, there is a
node in the tree labeled with both α1 and α2

if a label occurs in two nodes x1, x2 in the tree, it also
occurs on all paths between x1 and x2.

?>=<89:;A

@@
@@

@@
?>=<89:;B

@@
@@

@@

~~
~~

~~

?>=<89:;E ?>=<89:;D ?>=<89:;C ?>=<89:;F ?>=<89:;G

1

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

1

If treewidth of the AGG is bounded by a constant, the primal
graph’s tree decomposition can be computed in polynomial time.
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3. Partition the AGG According to the Tree Decomposition

By construction: for each node α in the action graph, there always
exists a tree node in the decomposition of the primal graph that
contains α and its neighbors in the action graph.

The tree decomposition therefore induces the following partition on
the AGG:

Pure Nash Equilibria in AGGs Jiang & Leyton-Brown
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4. Compute Sufficient Statistics for Partial Solutions on
Each Partition

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

1

For restricted game on {C}:
n′ c[B,C,D, F ] Uw(∅) Ub(∅)
0 0,0,0,0 ∞ −∞
0 1,0,0,0 ∞ −∞
· · · · · · ∞ −∞
1 0,1,0,0 ∞ −∞
1 1,1,0,0 ∞ −∞
· · · · · · ∞ −∞
2 0,2,0,0 ∞ −∞

For restricted game on {F,G}:
n′ c[C,F,G] Uw(G) Ub(G)
0 0,0,0 ∞ 0
0 1,0,0 ∞ 0
0 2,0,0 ∞ 0
1 0,1,0 ∞ −2
1 1,0,1 0 −2
2 0,1,1 −2 −∞

Pure Nash Equilibria in AGGs Jiang & Leyton-Brown
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5. Working up the Tree, Combine Restricted Games

Combine restricted games in bottom-up order: from leaves to root.

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

1

Combine {C} and {F,G} to create table for restricted game on
{C,F,G}:

n′ c[B,C,D, F ] Uw(G) Ub(G)

0 0,0,0,0 ∞ 0
0 1,0,0,0 ∞ 0
· · · · · · ∞ 0
1 0,0,0,1 ∞ −2
1 1,0,0,1 ∞ −2
1 0,0,1,1 ∞ −2
2 0,1,0,0 0 −∞
2 0,2,0,0 ∞ −∞
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1

Combine {D,E} and {C,F,G} to create table for {C,D,E,F,G}:

n′ c[B,C,D, F ] Uw(E,G) Ub(E,G)

0 0,0,0,0 ∞ 0
0 1,0,0,0 ∞ 0
0 2,0,0,0 ∞ 0
1 0,0,1,0 ∞ 0
1 1,0,1,0 ∞ 0
1 0,0,0,1 ∞ 0
1 1,0,0,1 ∞ 0
2 0,0,1,1 ∞ −∞
2 0,2,0,0 ∞ −∞
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Combine restricted games in bottom-up order: from leaves to root.

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

1

Combine {A,B} and {C,D,E,F,G}:

n′ c[A,B,C] Uw(D,E, F,G) Ub(D,E, F,G)
2 0,0,0 1 −∞
2 0,0,2 ∞ −∞
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6. Top-Down Pass to Compute PNSE

n′ c[A,B,C] Uw(D,E, F,G) Ub(D,E, F,G)
2 0,0,0 1 −∞
2 0,0,2 ∞ −∞

To compute a PSNE, start from the root and work down. At each
node, pick a row from the table of sufficient statistics that is
consistent with earlier picks.

If we start with row 1, we select an equilibrium in which one
player chooses D, one player chooses F

If we start with row 2, we select an equilibrium in which both
players choose C
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Conclusions & Beyond Symmetric AGGs

dynamic programming approach for computing pure equilibria
in AGGs

poly-time algorithm for symmetric AGGs with bounded
treewidth

our approach can be extended to general AGGs
different set of sufficient statistics

when the game is k-symmetric (i.e. has k distinct action
sets), use k-configuration (k-tuple of configurations, one for
each equivalence class of players), and similarly use k-tuples of
Uw, Ub

for subgraphs in which only k′ of the k classes of players
participate, only need to keep track of the sufficient statistics
for those k′ classes.

related algorithms for graphical games (Daskalakis &
Papadimitriou 2006) and simple congestion games (Ieong et al
2005) become special cases of our approach
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